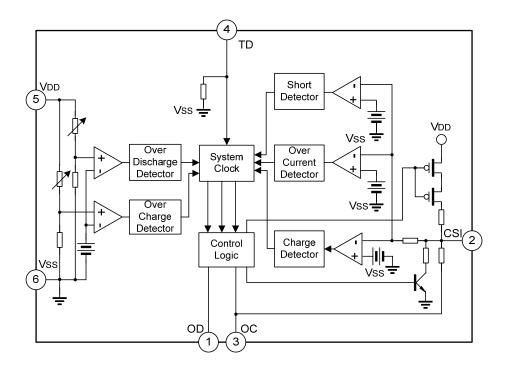

LI+ BATTERY PROTECTION CIRCUIT

DESCRIPTION

SC8261G is a LI+ battery protection circuit. It is suitable for protecting LI+ battery against damage from over charge, over discharge, and over current. It contains high accurate voltage detection and delay circuits.

FEATURES

- * Low supply current
- * Over-charge detect 4.280V, Over-charge release 4.110V.
- * Over-discharge detect 3.00V, Over-discharge release 3.00V.
- * Over-current detect 0.15V, Short Current detect 1.00V.
- * Overcharge/over-discharge/over-current detection delay
- * Charger detection
- * Reset resistance for over current protection
- * Wide supply voltage range
- * Small package


ORDERING INFORMATION

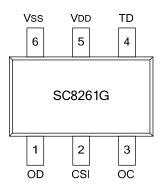
Device	Package	Seal
SC8261G	SOT-23-6	8261G

APPLICATIONS

* Protection IC for One-Cell LI+ Battery Pack

BLOCK DIAGRAM

ABSOLUTE MAXIMUM RATING


Characteristics	Symbol	Value	Unit
Supply Voltage	VDD	Vss-0.3 ~ Vss+12	V
OC Output Pin Voltage	Voc	VDD-15 ~ VDD+0.3	V
OD Output Pin Voltage	VOD	VSS-0.3 ~ VDD+0.3	V
CSI Input Pin Voltage	Vcsi	VDD-15 ~ VDD+0.3	V
Operating Temperature Range	TOPR	-40 ~ + 85	°C
Storage Temperature Range	TSTG	-40 ~ +125	°C

ELECTRICAL CHARACTERISTICS (Tamb=25°C, unless otherwise specified)

Characteristics	Symbol	Status	Min.	Тур.	Max.	Unit
Operating Voltage						
Operating Voltage	Vdd		1.8		8.0	V
Current Consumption		r				
Supply Current	IDD	VDD=3.9V		3.0	6.0	μA
Power Down Current	IPD	VDD=2.0V		0.3	0.6	μA
Detection Voltage						
Over Charge Detection Voltage	Vocu		4.255	4.280	4.305	V
Over Charge Release Voltage	VOCR		4.075	4.110	4.145	V
Over Discharge Detection Voltage	VODL		2.90	3.00	3.10	V
Over Discharge Release Voltage	Vodr		2.90	3.00	3.10	V
Over Current 1 Detection Voltage	V0I1		0.13	0.15	0.17	V
Over Current 2(Short Current)Detection	V012	VDD=3.6V	0.80	1.00	1.20	V
Voltage	VOIZ	vuu-3.0V	0.00	1.00	1.20	v
Over Current Reset Resistor	Rshort	VDD=3.6V	400	500	600	kΩ
Charger Detection Voltage	Vсн		-0.8	-0.5	-0.2	V
Delay Time						
Over Charge Detection Delay Time	Тос	VDD=3.6V~4.4V	150	340	500	ms
Over Discharge Detection Delay Time	TOD	VDD=3.6V~2.0V	80	200	300	ms
Over Current 1 Detection Delay Time	TOI1	VDD=3.6V	5	13	20	ms
Over Current 2(Short Current)Detection	T012	VDD=3.6V		5	50	μS
Delay Time	1012	VDD-3.0V		5	50	μο
Other		Γ		1		
OC Pin Output "H" Voltage	Voh1		VDD-0.1	VDD-0.02		V
OC Pin Output "L" Voltage	Vol1			0.01	0.1	V
OD Pin Output "H" Voltage	Voh2		VDD-0.1	VDD-0.02		V
OD Pin Output "L" Voltage	Vol2			0.01	0.1	V

PIN CONFIGURATION

PIN DESCRIPTIONS

PIN No.	Symbol	I/O	Description
1	OD	0	FET gate connection pin for discharge control.
2	CSI	I/O	Input pin for current sense, charger detect.
3	OC	0	FET gate connection pin for charge control.
4	TD	I	Test pin for reduce delay time.
5	Vdd	I	Positive power input pin.
6	Vss		Negative power input pin.

FUNCTION DESCRIPTIONS

Normal Status

If VODL<VDD<VOCU and VCH<VCSI<VOI1, M1 and M2 are both turned on (refer to Typical Application Circuits). The charging and discharging processes can be operated normally.

Overcharge Detection

When enter charging from normal status, the battery voltage can be detected from VDD. When the battery is in overcharge status, VDD is larger than VOCU over a delay time of TOC, M2 is to be turned off.

Release of Overcharge Status

There are two ways to return to normal status from overcharge status.

- If the battery is self discharging and VDD<VOCR occurs, M2 is to be turned on and back to normal status.
- Remove the charger and connected to a load. If VOCR<VDD<VOCU and VCSI>VOI1 occurs, M2 is to be turned on and back to normal status.

Over discharge Detection

When enter discharging from normal status, the battery voltage can be detected from VDD. When the battery is in over discharge status, VDD is smaller than VODL over a delay time of TOD; M1 is to be turned off. In the meanwhile, CSI is pulled to VDD by way of internal resistor RCSID. If VCSI>VOI2, the protection IC enters into Power-down mode. (Its current consumption is lower than 0.3μ A).

Release of Power-down mode

A charger is connected while the battery remains in Power-down mode. If VCH<VCSI<VOI2 and VDD<VODR occur, M1 is still off but it releases Power-down mode. If VDD>VODR occurs, M1 is to be turned on and back to normal status.

Charger Detection

If a charger is connected to the battery remained in Power-down mode, the voltages will become VCSI<VCH and VDD>VODL. M1 is to be turned on and back to normal status.

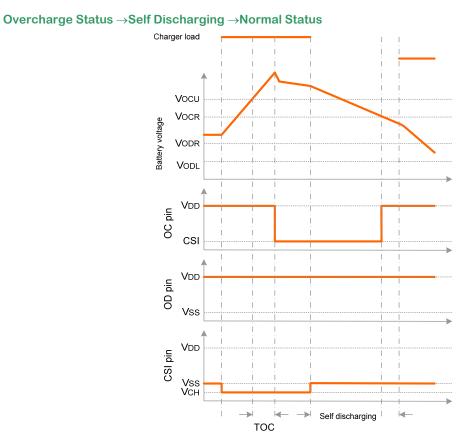
Abnormal Charging Status

If a charger is connected to the battery in normal status, VCSI<VCH occurs over a delay time longer than TOC, M2 is to be turned off.

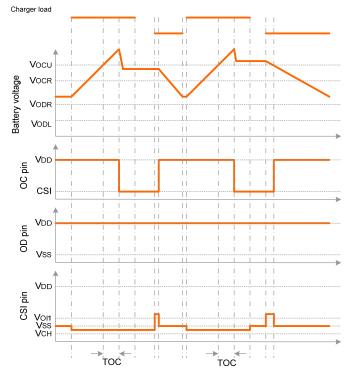
Over Current/Short Current Detection

When the discharging current is too large during discharging under normal status and the voltage detected from CSI is larger than VOIX (VIO1 or VIO2) for over a certain delay time TOIX (TIO1 or TIO2), it means the over current/short current status occurred. M1 is turned off. CSI is pulled to VSS by way of an internal resistor RCSIS.

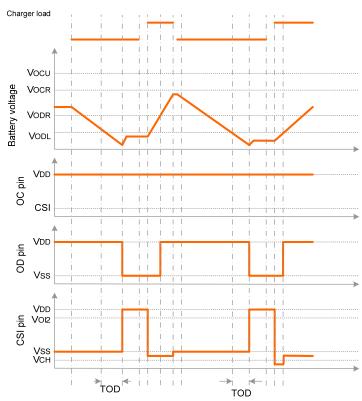
Release of Over Current/Short Current Status


While the protection IC remains in Over Current/Short Current status and load is removed or the impedance between VBAT+ and VBAT- is larger than 500K Ω and VCSI<VOI1, M1 is to be turned on and back to normal status.

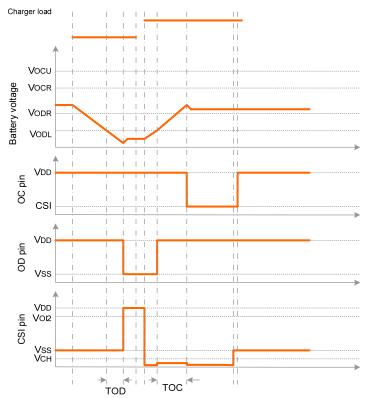
Note: when a battery is connected to a protection IC for the first time, the IC may not enter the normal status (not dischargeable status). If this occurs, set the CSI pin voltage equal to the VSS voltage (short the CSI and VSS pins or connect a charger) to enter the normal status.

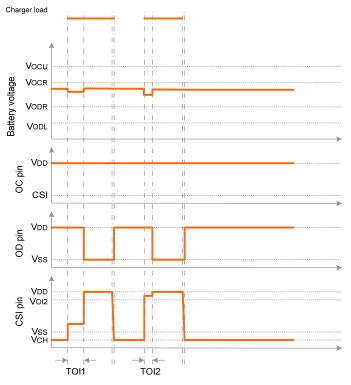


SC8261G

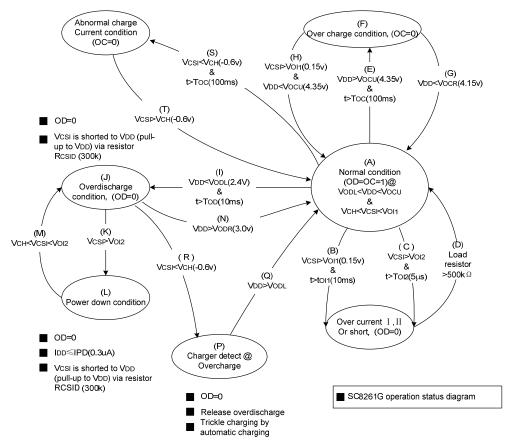

TIMING DIAGRAM

Overcharge Status→Load Discharging→Normal Status

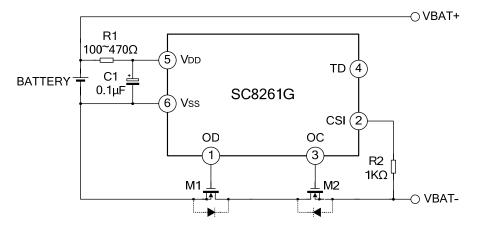



$Overcharge \ Status {\rightarrow} Charging \ By \ Charger {\rightarrow} Normal \ Status$

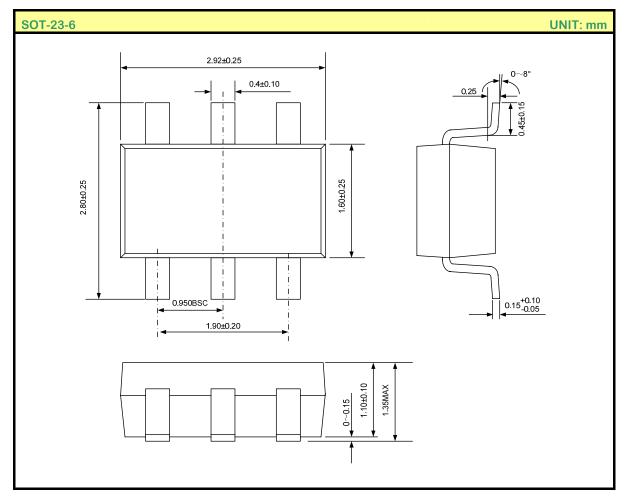
$Overcharge\ Status {\rightarrow} Abnormal\ Status {\rightarrow} Normal\ Status$



Over Current Status → **Normal Status**



STATE DIAGRAM OF OPERATION



TYPICAL APPLICATION CIRCUITS

Note: The circuit and parameters are reference only, please set the parameters of the real application circuit based on the real test.

PACKAGE OUTLINE

HANDLING MOS DEVICES:

Electrostatic charges can exist in many things. All of our MOS devices are internally protected against electrostatic discharge but they can be damaged if the following precautions are not taken:

- Persons at a work bench should be earthed via a wrist strap.
- Equipment cases should be earthed.
- All tools used during assembly, including soldering tools and solder baths, must be earthed.
- MOS devices should be packed for dispatch in antistatic/conductive containers.

Note: Silan reserves the right to make changes without notice in this specification for the improvement of the design and performance. Silan will supply the best possible product for customers.